Week 2

Day	9:00 - 10:15	10:30 - 11:45	1:30 - 2:45	3:00 - 5:00
Mon	Matching	Synchrotron	Overview of	Lab:
	Techniques	Radiation	Facilities	Matching/Insertions
Tues	Sensitivity	A Design Study:	Homework Review	Lab: Design and
	Analyses	SSC	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Analysis
Wed	Space Charge	Instrumentation	Homework Review	Lab: Design and
	Effects		\mathcal{E} Discussion	Analysis
Thur	Transverse	Lattice Issues	Review Session	Lab:
	Coupling	for the Future		Finish Labs
Fri	Wrap Up	Final Exam		
	9:00-9:30 a.m.	10:00 a.mnoon		

Monday

- Matching -- putting it together
 - beta function matching
 - @ cells; insertions
 - dispersion matching
 - Modularity and Intelligibility
- Other off-momentum considerations (if time)
- Synchrotron Radiation

Optical Design

Components and Techniques

- First Key Question: What is the purpose of the accelerator / beamline?
 - sets requirements on particle energy, luminosity/ brilliance, beam size, acceleration rate, particle targeting rate, ...
 - ...which sets requirements for B, B', ...

Next Questions:

- key parameters? aperture, final focus, momentum acceptance, momentum manipulations, high intensity, ...
- special requirements? slow spill, e⁻ stripping, diagnostic section(s), collimators/halo removal, beam cooling, ...
 - also, # users/experiments: 10-100? (LS); 1-10? (HEP); 1-2? (medical), etc.
- choice(s) of technology? max. field strengths, straight sections lengths, apertures, ...

Questions, cont'd...

- system constraints?
 - geometrical -- existing tunnel(s), beam line direction/orientation, accommodation of surface features, geological, ...
 - components -- existing magnets, existing power supplies, diagnostics, accelerating cavities, ... COST! ...
- source(s) of particles?
 - o charge, injection energy, emittances, ...

Ex: Light Source

- Synchrotron Radiation due to bending (next lecture)
 -- want low dispersion function in the bending
 magnets --> produces smaller equilibrium emittances
- Typically, lower energy (~1-10 GeV) electrons; many users!
 - thus, can tolerate lower "packing fraction":
 - ② 2πρ/C ~< 50%</p>

Ex: HEP Synchrotron

- Here, typically very high energy, few experiments (though still MANY users!)
 - need lots of bending, perhaps less need for free space in the system
 - may look like mostly FODO cells, with space for RF accelerating cavities, injection/extraction, etc.
 - here, typically much larger packing fraction (70-80% or higher)

Beta Function Control

- Matched Insertions
- Collins Straight Section
- Quarter-wave Transformer
- Interaction Region / Final Focus

Dispersion Control

- Achromatic Bends
- Dispersion Suppressor
- Imaginary Transition Energy
- Transition Jump
- Bunch Compression

Homework due Tuesday

- @Problem Set 3 -- #6
- @ Problem Set 4 -- # 1
- Problem Set 5 -- #10 (1.8 T is wrong; calculate the necessary value!)
- Problem Set 5 -- #11 (use rho = 750 m, and R = 1000 m)

Synchrotron Radiation

- Radiation of accelerated charge
- Energy loss per turn; per meter; per radian
- Damping of oscillations
- Quantum Excitation of Betatron Oscillations
- Equilibrium beam emittances
- Energy Spectrum

Homework due Tuesday

- Problem Set 3 -- #6
- Problem Set 4 -- # 1 (find tune shift in vertical plane: betax ~ betay= 30m)
- Problem Set 5 -- #10 (1.8 T is wrong; calculate the necessary value!)
- Problem Set 5 -- #11 (use rho = 750 m, and R = 1000 m)

Electron Facilities

- Electron Synchrotrons
 - High Energy Physics
 - @ CESR, LEP,
 - @ PEP II, KEKb, ...
 - Light Sources
 - ONSLS, ALS, APS, ...
- Electron Linacs
 - Medical Accelerators
 - SLAC SLC, CEBAF, ...
 - Future -- TESLA FEL, ILC?

Luminosity, Brightness

FODO vs. Comb Fcn vs. other lattice options

wigglers, undulators, FEL

"Generations" of LS's

Cornell University -- CESR

184-inch Cyclotron, Berkeley -- 1940's

Now, a light source -- ALS

A typical lattice for a storage ring

Light Source Lattices

- Chasmin-Green
- Triple-bend achromats
- Minimum emittance lattice
- Bunch compression
- Coherent SR
- Insertions for wigglers/undulators

Chasmann-Green cell

- Double bend achromat with unique central quadrupole
- Achromatic condition is assured by tuning the central quadrupole
- Minimum emittance with a quadrupole doublet in either side of the bends
- The required focal length of the quad is given by

$$f = \frac{1}{2}(L_{\rm drift} + \frac{1}{2}L_{\rm bend})$$
 and the dispersion

$$D_c = (L_{\text{drift}} + \frac{1}{2}L_{\text{bend}})\theta$$

Disadvantage the limited tunability and reduced space

DBA with triplet

- Central triplet between the two bends and two triplets in the straight section to achieve the minimum emittance and achromatic condition
- Elettra (Trieste) uses this lattice achieving almost the absolute minimum emittance for an achromat
- Disadvantage the increased space in between the bends

Lattices, USPAS, January 2008

Expanded DBA

- Original lattice of ESRF storage ring, with 4 quadrupoles in between the bends
- Alternating moderate and low beta in intertions

Lattices, USPAS, January 2008

Expanded DBA II

- Original lattice of ESRF storage ring, with 4 quadrupoles in between the bends
- Alternating moderate and low beta in insertions

General double bend structure

- Reduce emittance by allowing dispersion in the straight sections
- ■ESRF reduced emittance almost halved the emittance achieved

Theoretical minimum emittance optics

Advanced Photon Source (APS) -- Argonne National Laboratory

The APS RADIO FREQUENCY EQUIPMENT BOOSTER/INJECTOR SYNCHROTRON e-LINAC ACCUMULATOR RING LOW-ENERGY STORAGE RING UNDULATOR **TEST LINE** INSERTION DEVICES 400 ft EXPERIMENT HALL 4.97 BEAMLINES LAB/OFFICE MODULES

Undulator at the APS

Stanford Linear Accelerator Center

LEP, Geneva -- 1990's

Proton Facilities

- Proton Synchrotrons -- FT
 - © CERN, Fermilab
 - SpS, MR, Tevatron
- Hadron Colliders
 - Sp(pbar)S, Tevatron
 - RHIC
- Hybrids -- HERA
- High Intensity
 - PSR, SNS, AGS, MI, ...
- Future -- LHC; VLHC? Proton Driver, nu Source, ..

Luminosity, Power

Collider vs. Fixed Target

Interaction Regions

Emittance preservation

Antiproton production

Heavy Ions, polarized protons, ...

Cosmotron, Brookhaven -- 1950's

AGS, Brookhaven -- 1960's

Example: FNAL Main Injector

Tevatron, Batavia -- 1980's

Relativistic Heavy Ion Collider Brookhaven -- 2000's

Brookhaven National Lab

Fermilab

European Organization for Nuclear Research (CERN) -- LEP, LHC tunnel

General Layout

Standard Cell

Interaction Regions

- Beams collide in region much like at Tevatron, RHIC...
 - asymmetric triplet magnets focus to small spot
 - zero momentum dispersion

optics adjusted
 ("squeeze") once at
 final energy

Homework due Tuesday

- @Problem Set 3 -- #6
- Problem Set 4 -- # 1 (find tune shift in vertical plane: betax ~ betay)
- Problem Set 5 -- #10 (1.8 T is wrong; calculate the necessary value!)
- Problem Set 5 -- #11 (use rho = 750 m, and R = 1000 m)